Assignment 5

Hand in no. 1, 2, 5, 6 and 10 by October 10, 2019.

- 1. In a metric space (X, d), its metric ball is the set $\{y \in X : d(y, x) < r\}$ where x is the center and r the radius of the ball. May denote it by $B_r(x)$. Draw the unit metric balls centered at the origin with respect to the metrics d_2, d_{∞} and d_1 on \mathbb{R}^2 .
- 2. Determine the metric ball of radius r in (X, d) where d is the discrete metric, that is, d(x, y) = 1 if $x \neq y$.
- 3. Consider the function Φ defined on C[a, b]

$$\Phi(f) = \int_a^b \sqrt{1 + f^2(x)} \ dx.$$

Show that it is continuous in C[a, b] under both the support and the L^1 -norm.

- 4. Consider the function Ψ defined on C[a, b] given by $\Psi(f) = f(x_0)$ where $x_0 \in [a, b]$ is fixed. Show that it is continuous in the supnorm but not in the L^1 -norm. Suggestion: Produce a sequence $\{f_n\}$ with $||f_n||_1 \to 0$ but $f_n(x_0) = 1$, $\forall n$. Ψ is called an evaluation map.
- 5. Let K be a continuous function defined on $[0,1] \times [0,1]$ and consider the map

$$T(f)(x) = \int_0^1 K(x, y) f(y) dy \; .$$

Show that this map maps $(C[0,1], \|\cdot\|_1)$ to $(C[0,1], \|\cdot\|_\infty)$ continuously.

6. Let A and B be two sets in (X, d) satisfying d(A, B) > 0 where

$$d(A,B) \equiv \inf \left\{ d(x,y) : (x,y) \in A \times B \right\}.$$

Show that there exists a continuous function f from X to [0,1] such that $f \equiv 0$ in A and $f \equiv 1$ in B. This problem shows that there are many continuous functions in a metric space.

- 7. In class we showed that the set $P = \{f : f(x) > 0, \forall x \in [a, b]\}$ is an open set in C[a, b]. Show that it is no longer true if the norm is replaced by the L^1 -norm. In other words, for each $f \in P$ and each $\varepsilon > 0$, there is some continuous g which is negative somewhere such that $||g - f||_1 < \varepsilon$.
- 8. Show that [a, b] can be expressed as the intersection of countable open intervals. It shows in particular that countable intersection of open sets may not be open.
- 9. Optional. Show that every open set in \mathbb{R} can be written as a countable union of disjoint open intervals. Suggestion: Introduce an equivalence relation $x \sim y$ if x and y belongs to the same open interval in the open set and observe that there are at most countable many such intervals.
- 10. Let f be a function from (X, d) to (Y, ρ) . Show that f is continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y.